
BACHELOR PAPER
Term paper submitted in partial fulfillment of the requirements for
the degree of Bachelor of Science in Engineering at the University
of Applied Sciences Technikum Wien - Degree Program Computer
Science

Clientside web communication options and
their consequences for stateless service
design

By: Peter Öttl

Student Number: 1910257146

Supervisor: Ing. Stefan Vietze, MSc.

Vienna, May 22, 2022



Abstract

More and more applications are using the advantages of cloud services and web applications.
The advantages are that the application is just behind a tiny URL, can be used without an in-
stallation and can be accessed anywhere and from any device. Furthermore, these modern
applications use HTTP to communicate with the server. This technology is limited to unidirec-
tional communication. Therefore, only the server can send data to the client after a request.
This happens after a user triggers an event, like a button click, a form submission or a simple
page refresh.
With WebSockets or Server-Sent Events, the server can send data to the client without sending
such a request. These features are provided with different technologies and network proto-
cols. This thesis compares these technologies in terms of their advantages, disadvantages,
and challenges. It also introduces the theory of TCP, HTTP and real-time HTTP.
The main goal is to integrate a real-time HTTP feature into the all about apps go starter project.
The biggest challenges are integrating the real-time feature, keeping the application itself state-
less, and using it with the current auth flow. Another requirement is to ensure that the application
remains replicable and scalable and that all principles of twelve factor apps are kept. This was
accomplished using Redis as a pub-sub service, WebSockets as a real-time communication
protocol and a different auth endpoint for one-time auth tokens.
To conclude this thesis, with Redis PubSub and WebSockets, the server is capable of real-time
communication features and the replication of the service is ensured.

Keywords: WebSocket, server-sent events, polling, client-server communication, Redis, Pub-
sub, stateless service


	Introduction
	Motivation
	Research Questions
	Overview

	Theory
	TCP
	HTTP
	HTTP methods
	HTTP headers
	HTTP request
	HTTP response
	HTTP status codes

	Real-Time HTTP
	HTTP polling
	HTTP long polling

	Server-Sent Events
	EventSource API
	Event Stream Protocol
	Problems with Server-Sent Events

	WebSocket
	WebSocket API
	WebSocket Protocol

	The Twelve Factors App
	Codebase
	Dependencies
	Config
	Backing services
	Build, release, run
	Processes
	Port binding
	Concurrency
	Disposability
	Dev/prod parity
	Logs
	Admin processes

	Stateless & Stateful
	Stateless
	Stateful

	all about apps - go starter template
	Workflow

	PubSub
	Redis PubSub Example


	Integration of SSE and WebSocket to the public aaa go-starter template
	Motivation
	The Problem
	The Solution

	Server-Sent Events
	WebSocket
	Data vs. Notification
	Authentication

	Alternatives to the Redis pubsub layer approach
	Only one replica
	PostgreSQL LISTEN/NOTIFY
	Erlang/OTP cluster
	MongoDB - change streams

	Use cases, Comparison and Challenges
	Polling
	Long polling
	Server-Sent Event (SSE)
	WebSocket

	Conclusion
	Bibliography
	List of Figures
	Listings
	List of Abbreviations



