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Abstract

More and more applications are using the advantages of cloud services and web applications.
The advantages are that the application is just behind a tiny URL, can be used without an in-
stallation and can be accessed anywhere and from any device. Furthermore, these modern
applications use HTTP to communicate with the server. This technology is limited to unidirec-
tional communication. Therefore, only the server can send data to the client after a request.
This happens after a user triggers an event, like a button click, a form submission or a simple
page refresh.
With WebSockets or Server-Sent Events, the server can send data to the client without sending
such a request. These features are provided with different technologies and network proto-
cols. This thesis compares these technologies in terms of their advantages, disadvantages,
and challenges. It also introduces the theory of TCP, HTTP and real-time HTTP.
The main goal is to integrate a real-time HTTP feature into the all about apps go starter project.
The biggest challenges are integrating the real-time feature, keeping the application itself state-
less, and using it with the current auth flow. Another requirement is to ensure that the application
remains replicable and scalable and that all principles of twelve factor apps are kept. This was
accomplished using Redis as a pub-sub service, WebSockets as a real-time communication
protocol and a different auth endpoint for one-time auth tokens.
To conclude this thesis, with Redis PubSub and WebSockets, the server is capable of real-time
communication features and the replication of the service is ensured.
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